Approximation Algorithms and Hardness Results for Shortest Path Based Graph Orientations

نویسندگان

  • Dima Blokh
  • Danny Segev
  • Roded Sharan
چکیده

The graph orientation problem calls for orienting the edges of an undirected graph so as to maximize the number of pre-specified source-target vertex pairs that admit a directed path from the source to the target. Most algorithmic approaches to this problem share a common preprocessing step, in which the input graph is reduced to a tree by repeatedly contracting its cycles. While this reduction is valid from an algorithmic perspective, the assignment of directions to the edges of the contracted cycles becomes arbitrary, and the connecting source-target paths may be arbitrarily long. In the context of biological networks, the connection of vertex pairs via shortest paths is highly motivated, leading to the following variant: Given an undirected graph and a collection of source-target vertex pairs, assign directions to the edges so as to maximize the number of pairs that are connected by a shortest (in the original graph) directed path. Here we study this variant, provide strong inapproximability results for it and propose an approximation algorithm for the problem, as well as for relaxations of it where the connecting paths need only be approximately shortest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Solutions for Time-Varying Shortest Path Problem

Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...

متن کامل

Algorithmic and Hardness Results for the Hub Labeling Problem

There has been significant success in designing highly efficient algorithms for distance and shortest-path queries in recent years; many of the state-of-the-art algorithms use the hub labeling framework. In this paper, we study the approximability of the Hub Labeling problem. We prove a hardness of Ω(log n) for Hub Labeling, matching known approximation guarantees. The hardness result applies t...

متن کامل

All Colors Shortest Path Problem

All Colors Shortest Path problem defined on an undirected graph aims at finding a shortest, possibly non-simple, path where every color occurs at least once, assuming that each vertex in the graph is associated with a color known in advance. To the best of our knowledge, this paper is the first to define and investigate this problem. Even though the problem is computationally similar to general...

متن کامل

Reachability Under Uncertainty

In this paper we introduce a new network reachability problem where the goal is to find the most reliable path between two nodes in a network, represented as a directed acyclic graph. Individual edges within this network may fail according to certain probabilities, and these failure probabilities may depend on the values of one or more hidden variables. This problem may be viewed as a generaliz...

متن کامل

Acyclic orientations do not lead to optimal deadlock-free packet routing algorithms

In this paper we consider the problem of designing deadlock-free shortest-path routing algorithms. A design technique based on acyclic orientations has proven to be useful for many important topologies, e.g., meshes, tori, trees and hypercubes. It was not known whether this technique always leads to algorithms using an asymptotically optimal number of buffers. We show this is not the case by pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012